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Abstract: We show that narrow trenches in a high-contrast silicon-photonics slab can act as
lossless power dividers for semi-guided waves. Reflectance and transmittance can be easily
configured by selecting the trench width. At sufficiently high angles of incidence, the devices are
lossless, apart from material attenuation and scattering due to surface roughness. We numerically
simulate a series of devices within the full 0-to-1-range of splitting ratios, for semi-guided plane
wave incidence as well as for excitation by focused Gaussian wave bundles. Straightforward
cascading of the trenches leads to concepts for 1×M-power dividers and a polarization beam
splitter.
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1. Introduction

Optical beam splitters can be counted among the key components of photonic circuitry. One
distinguishes power splitters, or power dividers, on the one hand, and polarization splitters on
the other hand. In a context of integrated optics, power beam splitters aim at distributing the
optical power from an input channel waveguide between two or more outlet channels, mostly
for waves of uniform polarization. Manifold variants have been proposed, differing in platform
and/or particular purpose. Among the more recent proposals are concepts that rely on specifically
tailored (adiabatic, tapered) directional couplers [1–3], on multimode-interference couplers
(MMIs) [4], Y-junctions [5], or waveguide gratings [6]. Several of these device types can also be
configured as polarization beam splitters [7–11], that direct modes of different polarization to
separate waveguide outlets.

With the present proposal we target a type of integrated optical systems that operate with
semi-guided waves [12,13]. These are only “vertically” guided by a thin-film slab. Laterally,
in the direction in-plane perpendicular to the direction of propagation, the waves are either not
confined at all, i.e. are characterized by a unique in-plane wavevector and plane wavefront, or
they are formed as focused superpositions of the former, as laterally confined bundles of waves
of e.g. Gaussian shape. We shall show in this paper that simple trenches in the guiding slab, as
introduced in Fig. 1, can act as lossless power dividers in this regime of semi-guided waves. We
look explicitly at structures with high refractive index contrast, as in the standard platforms of
silicon photonics [14]. The functioning relies on frustrated total internal reflection [15], hence
one might view this as an integrated-optical variant of common macroscopic double-prism (cube)
beam splitters [15].

In Section 2 we recapitulate certain more general features of semi-guided waves, and specialize
things for the parameters of the present symmetric Si/SiO2-slabs. Section 3 then takes a look at a
single waveguide facet, and its excitation at varying angles of incidence. Trenches of specific
width are the subject of Sections 4 and 5, where we consider the incidence of laterally unlimited
plane waves, and of focused wave bundles, respectively. While the former considerations concern
models with trenches of infinite length, in Section 6 we comment on the — rather obvious —
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Fig. 1. Propagation of semi-guided waves towards a trench in a slab waveguide, schematic
(a), and cross section view (b). Cartesian coordinates x, y, z are introduced, with x normal to
the slab plane and y parallel to the trench axis. Incoming waves propagate in the y-z-plane at
an angle θ with respect to the trench normal, generating outgoing waves with reflectance
R and transmittance T . Parameters: refractive indices nb = 1.45 (background), nf = 3.45
(film), slab thickness d = 0.22 µm, trench width w, target vacuum wavelength λ = 1.55 µm.

practically relevant length restriction. The last two Sections 7 and 8 discuss extensions of the
single-trench structures, towards power dividers with multiple outlets, and towards a polarization
beam splitter. A note on respective concepts for nonsymmetric slabs follows in Appendix A.

2. Oblique propagation of semi-guided waves

Traditional integrated optics of semi-guided waves [16–18] constitutes the primary context for
the present paper [12,13], where our concepts continue a series of more recent proposals on
structures with high refractive index contrast. This includes simple mirrors [19], corner- and
step-like folds in optical slab waveguides [20–22], coated slab waveguide facets [23,24], the
resonant oblique excitation of channel waveguides with rectangular [25–34] and circular cross
sections [35,36] for the realization of a variety of filtering functions, but also more complex
systems like lenses [37], or entire spectrometers [38]. Components operating with semi-guided
Bloch surface waves have been discussed as well [39]. Likewise, the devices proposed in this
paper are envisioned, in the first place, to be deployed in a framework of photonic circuitry that
is based on semi-guided waves, potentially in combination with any of the former components.
Clearly, none of these devices, including our beam splitters, are directly compatible with the
standard single mode channels (“photonic wires”) of silicon photonics. A connection to those
would require suitable tapers [19], or e.g. an in-plane grating coupler (“Bragg deflector”) [40].
Out-of-chip connections could be realized by gratings for coupling to fibers [41,42], tailored to
the wide semi-guided field, or by direct end-facet coupling with suitable (cylindrical) lenses.

Analysis of our beam splitters starts with a fundamental line of reasoning for systems that are
constant along one coordinate axis. In case of the structure of Fig. 1, this is the y-axis parallel to
the trench. Half-infinite access waveguides connect to the inner region of interaction. Here, these
are the slabs that extend from the central trench in ±z direction. Incident waves are considered
that are confined by one of the slab waveguides, with the functional form of standard plane waves
in the in-plane directions, for propagation at an angle θ with respect to the plane normal to y, as
indicated in Fig. 1. One arrives at a 2.5-D setting, where the structure is constant along y, but
where one looks for solutions of the full vectorial Maxwell equations in the frequency domain,
that share the harmonic y-dependence of the incoming semi-guided plane wave.

We refer to [13,21,43] for details of this formal analysis, and proceed with a few immediate
conclusions for our trench structure. For semi-guided input of a wave with slab-mode effective
index Nin at angle θ, any output wave governed by an effective index Nout propagates at an
angle θout that is related to the angle of incidence by an equation in the form of Snell’s law:
Nout sin θout = Nin sin θ. Hence, in case of the symmetric single-mode slabs, any semi-guided
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reflected or transmitted waves that are of the same polarization as the input are observed at the
same angle θout = θ as the incident wave.

Any potentially generated non-guided, radiative output waves (“cladding modes”) are char-
acterized by effective indices below the background level nb. These become evanescent, if, for
semi-guided input with effective index Nin at angle θ, no real output angle can be defined, i.e.
if θ>θb, for a critical angle θb with sin θb = nb/Nin. At vacuum wavelength λ = 1.55 µm, the
slab waveguides of thickness d = 0.22 µm with refractive indices nf = 3.45 (core) and nb = 1.45
(substrate and cladding) support fundamental guided slab modes with effective mode indices
NTE = 2.8227 and NTM = 2.0397 for TE and TM polarization [44]. One computes respective
critical angles θb, TE = 30.91◦ and θb, TM = 45.31◦ for TE- and TM-polarized excitation of
the trenches. Incidence at angles below these levels can be accompanied by power transfer to
non-guided waves; at higher angles all radiative losses are strictly suppressed.

In principle, scattering by the trenches could lead to more or less pronounced polarization
conversion [21]. For the present parameters, however, this can be ruled out by symmetry
arguments, if one restricts to the lossless regime θ>θb, where only the fundamental slab modes
carry power away from the region of interaction. The slab waveguides, and also the entire trench
configuration of Fig. 1 are mirror symmetric with respect to the horizontal plane at x = 0. For
in-plane propagation at arbitrary angles, the vectorial electromagnetic profiles E, H of the slab
modes [43] are functions of x only. The fundamental TE and TM modes are symmetric in the
following way: The TE mode has a profile with Ex = 0, even components Ey, Ez, and Hx, and
odd components Hy and Hz. For the TM mode, the components Ex, Hy, and Hz are even, and
components Ey and Ez are odd, with Hx = 0. In the plane x = 0 the TE mode thus satisfies
what is called perfect magnetic conductor (PMC)-boundary conditions [45], while the TM mode
complies with the perfect-electric-conductor (PEC) conditions. These modes thus belong to
different symmetry classes; as the full structure is also mirror symmetric with respect to the
plane x = 0, the symmetry of the incident field transfers to the entire solution. Hence, there is no
power transfer (“coupling”) between semi-guided waves of different polarization at any of the
interfaces, irrespective of the angle of incidence, for θ>θb.

Obviously, the former symmetry arguments require strictly “vertical” trench sidewalls. Fabri-
cation, however, may lead intentionally or unintentionally to trenches with more or less slanted
flanks. We briefly comment on this in Appendix A1.

For the present paper, we rely on a semi-analytical simulation method as described in
[43,46,47]. The solver addresses the 2.5-D scattering problem on a two-dimensional rectangular
computational domain with transparent-influx boundary conditions. The computational scheme
is based on simultaneous expansions into polarized local vectorial slab eigen-modes along the
two orthogonal cross section coordinates x, z (vectorial quadridirectional eigenmode propagation
vQUEP). The size of the computational domain and the number of expansion terms enter as
computational parameters; convergence has been assured as required for the data as displayed.

3. Slab waveguide facets

In preparation of the discussion of the full trench structures, we consider a single waveguide
facet first. Figure 2 shows reflectances RTE and RTM for TE- and TM-polarized excitation of the
structure of Fig. 1 for large width w, where the second slab region for z>0 is absent.

Unit reflectances are predicted for angles of incidence θ beyond the critical values θb,TE, θb,TE.
Radiative losses vanish in line with our former reasoning; here the facet acts as a perfect mirror.
The symmetry arguments from Section 2 apply also to a single facet. For polarized semi-guided
input, no power is reflected into the fundamental mode of different polarization. As confirmed by
the vQUEP computations (curves are not shown), this holds for the entire range θ ∈ [0, 90[◦ of
angles of incidence. In the regions θ<θb, however, the symmetry arguments well permit power
transfer to non-guided radiative modes of different polarization and higher order. In that sense,
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Fig. 2. Bold curves: Oblique incidence of polarized semi-guided waves at a single slab
facet, reflectances RTE for TE input (continuous), RTM for TM input (dashed) as a function
of the incidence angle θ. Thin lines: Reflectances for oblique plane wave incidence at
an interface between two dielectric media, for p-polarized waves and refractive index
contrast 2.8227 : 1.45 (continuous) and for s-polarized waves and refractive index contrast
2.0397 : 1.45 (dashed). Critical angles θb,TE and θb,TM for radiative losses are indicated.

polarization conversion is well possible, but not between the fundamental semi-guided fields that
are of interest here.

It is tempting to disregard the vertical wave confinement for a moment, and to view this as a
problem of plane wave reflection at a dielectric interface, as predicted by the Fresnel equations
[48,49], using the effective indices of the incoming modes as refractive indices. The thin lines
in Fig. 2 show the reflectance for p-polarized plane waves at an interface with refractive index
contrasts NTE : nb, and for s-polarized waves with refractive index contrast NTM : nb, respectively.
One observes some qualitative agreement with the vQUEP results for the actual waveguide facets.
θb,TE, θb,TE indicate the critical angles for total internal reflection in the simplified view. The
bold RTE-curve for the facet relates to the TE field with its electric field predominantly parallel to
the y-z-plane of incidence. The dip around θ = 26◦ can thus be interpreted as a feature akin to the
Brewster angle of classical optics. The actual reflectance levels, however, deviate substantially,
in particular for near-normal incidence of TE-polarized waves. We will therefore not pursue this
effective-index viewpoint any further.

Figure 3 compares a series of field shapes, for polarized excitation of the facets at different
angles of incidence. Both polarizations play a role, hence we choose to plot the energy density

Fig. 3. Oblique incidence of semi-guided waves at a slab waveguide facet; energy density u
of the optical electromagnetic field on a x-z-plane perpendicular to the facet, for TE (top row)
and TM input (bottom row) at angle θ; contour lines at 5%, 1%, and 0.5% of the maximum
level, with a uniform color scale for all panels.
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u = Re (ϵ0n2 |E|2+ µ0 |H |2)/4 of the electromagnetic field. The color scale has been adjusted such
that also features at low field levels can be recognized. The panels address normal incidence (a,
f), incidence close to, below (b, h) and above θb (c, i), and incidence at larger angles well beyond
the critical angle (d, e, j). Here the gradual decay of the field strength in positive z-direction
beyond the facet for θ>θb becomes apparent, which will be relevant for the discussion of power
dividers in the next sections. That decay rate differs pronouncedly, at the same angle of incidence,
for TE- and TM-polarized input (e, j). This will be instrumentalized for the construction of a
polarization beam splitter in Section 8.

4. Power dividers

We now consider the full trench structure of Fig. 1. An incidence angle θ = 45◦ facilitates simple
cascading of beam splitters, with power dividers arranged on a rectangular grid, such as in the
example of the 1 × M-divider discussed in Section 7. For the present parameters, however, that
angle is just below the critical angle θb, TM for loss suppression, i.e. not suitable for TM waves,
while the polarization beam splitter of Section 8 operates with waves of both polarizations, at the
same angle of incidence. Therefore, rather arbitrarily, we select the two angles 45◦ (TE only)
and 55◦ (TE and TM) for further evaluation. Reflectances and transmittances as functions of the
trench width w, for fixed angle of incidence, are shown in Fig. 4.

Fig. 4. Oblique incidence of semi-guided waves on the trench structure of Fig. 1, reflectance
R and transmittance T versus the trench width w; curves for TE (a) and TM excitation (b),
at angles θ = 45◦ (continuous) and θ = 55◦ (dashed). Markers: widths w selected for the
further examples in this section.

The curves in Fig. 4 resemble what would be expected for a standard configuration of plane
wave reflection at a thin layer with reduced refractive index, if one considers the dependence on
the thin-film-thickness for fixed angle on incidence. Tempting though it may be to compare with
respective calculations for 1-D multilayers, the quantitative deviations render this not useful in
the present context (curves are not shown here). The qualitative agreement, however, points to a
mechanism of frustrated total internal reflection (FTIR) [15], here in an essentially 2-D setting.

By construction, the trench structures operate without losses; for each polarization, reflectance
and transmittance always add up to one. “Design” of a power divider is then merely a matter
of looking up the width w required for any desired reflectance in a diagram such as Fig. 4.
Some examples are indicated; the values w = 0.008, 0.034, 0.060, 0.102, 0.283 µm (TE) and
w = 0.040, 0.133, 0.211, 0.317, 0.653 µm (TM) lead to power dividers with a reflectance of
R = 0.02, 0.25, 0.50, 0.75, 0.98 and transmittance T = 1−R, for angles of incidence θ = 45◦ (TE)
and θ = 55◦ (TM), respectively.

Figure 5 shows cross-sectional fields for some of these configurations. These can be understood
in terms of the FTIR process. According to Fig. 3, the reflection of the incoming wave at the
facet on the input side generates a field buildup beyond the facet. The second output facet “taps”
into that field, where the field strength at the position of the second facet decreases with growing
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distance between the facets. Optical power “tunnels” through the gap, establishing a connection
with a throughput that depends on the trench width w.

For given slab thickness and material properties, merely three parameters determine the
performance of these simple power dividers. Figure 6 summarizes the dependence of the device
reflectance on trench width w, angle of incidence θ, and vacuum wavelength λ, as a basis for an
estimation of fabrication tolerances.

In general, the strongest dependence on a deviation of a parameter from its design value is
observed for the 3 dB splitters with target level R = 0.5. The simulations predict derivatives
∂wR = 0.0083/ nm, ∂θR = 0.037/◦, and ∂λR = −0.00048/ nm for the TE splitter of 60 nm
width at λ = 1.55 µm for incidence at θ = 45◦. Likewise, one obtains ∂wR = 0.0030/ nm,
∂θR = 0.028/◦, and ∂λR = −0.0017/ nm for the TM splitter of 211 nm width at λ = 1.55 µm
for incidence at θ = 55◦. Material dispersion has been neglected for estimating the wavelength

Fig. 5. Oblique excitation of trenches of width w at angle θ, TE input (top row), TM input
(bottom row); energy density u of the optical electromagnetic field; contour lines at 5%, 1%,
and 0.5% of the maximum level, with a uniform color scale for all panel. These are lossless
structures with reflectance R and transmittance T = 1 − R.

Fig. 6. Reflectance R for polarized semi-guided plane waves, coming in at angle θ and
vacuum wavelength λ on trenches of width w, dependence of R on variations of either w (a,
d), θ (b, e), or λ (c, f).
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derivative. Note that the wavelength range in Fig. 6(c, f) spans the entire C-band of optical
telecommunications. Accepting a linearization as an approximation to the actual parameter
dependence, the maximum deviation ∆q in a design parameter q ∈ {w, θ, λ} that is permitted
for a deviation of no more than ∆R in reflectance can be estimated as ∆q = ∆R/∂qR, where the
actual tolerance interval is of width 2|∆q|. What concerns the gap width w, for TE polarization
and a deviation in reflectance of ±0.05, one estimates tolerance intervals of at least 12 nm for
all configurations considered. According to Fig. 6(a), the actual intervals are in general not
“symmetric” and partly substantially larger than that value. Lower reflectance derivatives indicate
larger tolerance intervals for TM polarization.

5. Splitting of semi-guided Gaussian wave bundles

So far we discussed incoming semi-guided plane waves with a single, well-defined angle of
incidence, and a strict harmonic y-dependence. In the present context of integrated optics,
however, any practically relevant fields need to be limited in their extension along y. As shown in
Refs. [21,22,27,36,37], this can be achieved by superimposing the former y-infinite solutions
with suitable weights over some range of y-wavenumbers, or angles of incidence, respectively.
One thus models the oblique incidence of still semi-guided, but now laterally confined “beams”.
Gaussian superpositions have been considered [21,27,36,37], as well as excitation by incoming
rib waveguides with shallow etching [22].

Here we look at TE- or TM-polarized wave bundles with spectrally Gaussian weights.
The beams are vertically (x-) guided, in-plane (y, z) of Gaussian shape, focused at the origin
(y, z) = (0, 0), and characterized by a primary angle of incidence θ and a beam width Wb (full
width of the field at focus, in the direction perpendicular to the principal direction of propagation,
1/ e-level). The quasi-analytical model takes the in-plane beam divergence into account. We
refer to [21,36] for explicit expressions. Figure 7 illustrates operation of our power dividers for
excitation by these beams.

Fig. 7. Power dividers of width w, excitation by TE- (a-d) or TM-polarized (e-h) semi-guided
Gaussian wave bundles of cross-sectional width Wb = 7 µm at angle θ leads to a reflectance
R and transmittance T = 1− R; energy density u of the optical electromagnetic field, contour
lines at 5%, 1%, and 0.5% of the maximum level, with a uniform color scale for all panels.
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These are non-resonant structures with a moderate dependence of transmission on incidence
angle, according to Fig. 6. For Fig. 7 we consider beams with a narrow waist of Wb = 7 µm;
the divergence of the beams with growing distance from the focus is only just discernible in the
figure. Even for these spatially quite narrow beams with their correspondingly wide angular
spectral distribution, the power dividers function as predicted for plane wave incidence, up to the
given digits for reflectances and transmittances.

6. Trenches of finite length

In case of incidence of semi-guided fields on trenches of finite length, one expects a general
distortion of reflected and transmitted waves or wave bundles, edge effects that lead to radiative
losses, and correspondingly a change in reflectance and transmittance. For focused incidence and
sufficient trench length, however, such that the trench extent covers adequately the lateral tails of
the wave bundles, a functioning of the trenches can be expected as predicted for infinite trench
length in the former sections. For beams of cross-sectional width Wb, incident on a trench at angle
θ, the respective beam width Wy in the direction y along the trench is given by Wy = Wb/cos(θ).
Plots like Fig. 7 can then give hints on the length required for the power dividers.

Note that, for the same principal angle of incidence and for trenches of sufficient lengths, the
power transmission characteristics are independent of the position of the beam focus. The values
for transmittances and reflectances as given remain constant, irrespective of whether the trench is
placed in a converging beam, at the beam focus, or in the diverging beam after the focus. This can
be attributed to the orthogonality, in the sense of Fourier-integrals along y, of the exponentials
that are superimposed to form the wave bundles [21,36].

7. 1× x M-power-divider

The former concept lends itself to cascading. Things become particularly simple in the TE case,
with individual splitters operating at an incidence angle of 45◦. As an example, Fig. 8 shows a
concept for an 1 × M-equal-power divider. The individual trenches are oriented at the 45◦-angle
with respect to the axis of the incoming bundle.

Fig. 8. Concept for a 1 × M-equal-power divider. A sequence of trenches, each with
potentially different width, are arranged along the axis of an incoming semi-guided wave
bundle with input power P0. Each trench with reflectance Rj diverts the power Pc from its
input Pj−1 into one of the M output “channels”.

If one chooses to divide the input power P0 equally between M outputs, each output channel
needs to receive a power of Pc = P0/M. Consequently, the ongoing powers Pj in the sequence
should be Pj = Pj−1 − P0/M = P0(1− j/M), and the reflectances of the trenches must be tuned to
Rj = (P0/M)/Pj−1 or Rj = 1/(M − j + 1). Neither resonances nor phase matching mechanisms
are involved in this concept. The distance between trenches can be quite arbitrary. As a lower
limit, the output beams must not overlap; there are no restrictions on placing trenches further
apart, e.g. if required by other circuitry. For narrow beam widths, the divergence of the wave
bundles must be considered, though. Obviously, by rotating one of the trenches by 90◦, its output
can be directed downward rather than upward.

For the previous analysis, we have chosen the core thickness d = 0.22 µm as a standard
for silicon photonics thin films. For a larger thickness d = 0.24 µm and otherwise unchanged
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parameters, the slab (still single-mode, but only just) supports a TM mode with larger effective
index NTM = 2.1977, leading to a lower critical angle for radiative losses θb, TM = 41.4◦. Hence,
beam splitters for TM modes and TM-1 × M-power dividers could be constructed for the 45◦
angle of incidence just as for TE modes. Different trench widths would be required for operation
with TE or TM polarization, though, hence these splitters would not be polarization independent.
However, it would just as well be straightforward to construct an 1×M-splitter for TM-polarization
with the original thinner films based on the 55◦ incidence angle: The input beam and the array of
output beams would then be observed at an angle of 110◦, and perhaps a slightly larger distance
between the trenches would be required to avoid overlapping of the output beams.

Note that the design of splitters with arbitrary ratios can be quite involved in a strict waveguide
context [4], while here all that is needed is to find adequate trench widths in a figure such as Fig. 4.
Tailoring the above multi-output-splitter to other power ratios should thus be straightforward.

8. Polarization beam splitter

Cascading of components, in a regime of small distances, can also lead to promising device
concepts [20–22,30,31]. Likewise, cascading of two of the former trenches can be exploited for
the construction of a polarization beam splitter for semi-guided waves. We consider an angle of
incidence of θ = 55◦, well above the critical angles θTE, θTM for both TE and TM polarization.
According to Fig. 4, the TM transmission exceeds the TE transmission for all trench widths w.
Hence we aim at a TM-pass polarization splitter, here a configuration with a TE reflectance and a
TM transmittance both as close as possible to unity.

A possible design uses two identical power dividers, as shown in Fig. 9(a). For the moment we
adopt a view of 1-D wave propagation in ±z-direction. The trenches then act as identical partial
reflectors, that establish resonances of Fabry-Perot-type, i.e. realize states of full transmission,
for certain distances s between the reflectors. The reflectances associated with the trenches, and
consequently also the shape / linewidth (vs. s) of the transmission resonances, differ for TE and
TM polarization.

Fig. 9. Concept for a polarization beam splitter (a), based on two trenches of width w at
a distance s; all other parameters are as given for Fig. 1. (b) Reflectance R (dashed) and
transmittance T (continuous) versus the distance s, for TE and TM excitation at θ = 55◦,
for w = 133 nm. (c, d) energy-density u on the x-z-plane for the splitter with separation
s = 1.698 µm, for TE (c) and TM input (d).
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Rather arbitrarily we fix a width w = 133 nm that effects, for an individual trench, a larger
reflectance RTE = 0.96 for TE waves, and only a moderate level RTM = 0.25 for TM fields.
As shown in Fig. 9(b), for the composite system this leads to T , R vs. s -curves with narrow
transmission peaks for TE input, with “flat” regions of high TE reflectance in-between, while the
TM transmission resonances are rather wide and largely overlapping. These features repeat with
a certain periodicity: In any homogeneous region of the slab, a mode with effective index N,
propagating at angle θ with respect to the z-direction with wavenumber kz = kN cos θ, relates to a
field with spatial periodicity along z with a period Λz = λ/(N cos θ). At θ = 55◦, one obtains
Λz,TE = 0.957 µm and Λz,TM = 1.325 µm for TE and TM polarization, respectively. Standard
Fabry-Perot theory then predicts that states with full transmission occur periodically in s, with a
period of ∆s = Λz/2, as it is confirmed by Fig. 9(b).

Due to the comparably large difference in the periods, a reasoning in terms of a beat length
to identify a distance s, that is suitable for a polarization splitter, is not really useful here. It
suffices to just look up a value s, where a TM transmission resonance appears within a flat-top TE
reflectance maximum. The thin dash-dotted vertical line in Fig. 9(b) at s = 1.698 µm indicates a
distance, for which both the TE reflectance and the TM transmittance of the device deviate from
unity by less than 1%. Panels (c, d) of Fig. 9 show the cross-sectional fields.

Finally we briefly consider the focused excitation of the polarization splitter. Figure 10
compares results for different beam widths Wb. By construction, the incident light bundles
contain waves at a range of angles around the principal beam angle θ. The angular response
of the device, for oblique plane wave incidence (not shown), exhibits a resonant behavior of
certain widths for TE- and TM-polarization, with good or optimum values at the design angle of
55◦. Apparently, for the narrower beams of width Wb = 10 µm, not all components of the wider
angular distribution are captured by the TM transmission resonance, such that the transmittance
is lower than that for semi-guided plane wave incidence in Fig. 9(d). For wider input beams

Fig. 10. Excitation of the polarization beam splitter of Fig. 9 by semi-guided Gaussian
beams, transmittance T and reflectance R = 1 − T (a), and extinction ratios ER and insertion
loss LO (b), for TE- and and TM-input, as a function of the beam width Wb. (c)–(f): Energy
density u of the optical electromagnetic field for incoming beams of width Wb = 10 µm
(c, d) and Wb = 50 µm (e, f), contour lines at 5%, 1%, and 0.5% of the maximum level;
all panels use the same color scale. Parameters θ = 55◦ (principal angle), w = 133 nm,
s = 1.698 µm are as given for Fig. 9(c, d).
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with narrower angular distributions, as well as for TE polarization (off-resonance operation),
the polarization beam splitter performs comparably for focused and for plane-wave incidence.
More specifically, for beam width Wb = 10 µm, one could characterize the device as a TM-pass
polarizer with an extinction ratio ERTM = 10 log10(TTM/TTE) = 30.4 dB and an insertion loss
LOTM = −10 log10(TTM) = 0.58 dB. At bundle width Wb = 50 µm, the polarization beam splitter
reaches levels of ERTM = 32.6 dB and LOTM = 0.03 dB for the TM path, and an extinction ratio
ERTE = 10 log10(RTE/RTM) = 21.3 dB and loss LOTE = −10 log10(RTE) = 0.003 dB for the TE
path. According to Fig. 10(a, b), these values improve even further for wider beams; also a
re-design with modified starting values for the width w and angle of operation θ might lead to
further optimization.

9. Concluding remarks

Simple rectangular trenches in a high-index slab can act as power dividers for polarized semi-
guided waves, harnessing the mechanism of frustrated total internal reflection. The devices
are easily configurable for the full range of splitting ratios [0, 1]. Neither resonances nor
phase-matching arguments play a role, therefore the power dividers are comparably broadband.
For a 3 dB splitter designed for TE operation at 1.55 µm wavelength, we calculated at maximum
deviation in reflectance of ±0.008 over the entire telecom-C-band. Assuming that material
attenuation and surface roughness can be neglected, the splitters are lossless. Straightforward
cascading opens up possibilities for other types of power dividers, e.g. with multiple outlets.
We have evaluated a simple design for a polarization beam splitter that relies on resonances of
Fabry-Perot-type, established by two of the former power dividers.

The required chip surface is largely determined by the lateral width of the semi-guided beams
with which the devices operate. In general, this size will be considerably larger than what can
be achieved in a context of conventional high-contrast single-mode waveguides (“wires”) of
silicon photonics. Still, sidewall roughness is among the major sources of optical power loss
in many integrated optical systems. Devices that operate on the present beams of semi-guided
waves might be able to largely avoid these losses [19]: For the power dividers discussed in this
paper, etching-roughness-related losses would arise from the trench flanks only, not from the long
propagation distances in between devices. This might be relevant in fields like single-photon
processing in quantum optics [50,51], where prevention of losses is of particular importance, or
in a field where devices are of a substantial size anyway, e.g. to exploit nonlinear effects.

A. Nonsymmetric slab waveguides

Among the devices for semi-guided waves listed at the beginning of Section 2, many — not all
— of the concepts concern structures based on high-index silicon films on oxide substrates or
buffers, covered by air. For the beam splitters to become compatible, we thus look briefly at the
changes in the former theory as required for these nonsymmetric host waveguides.

As before we consider parameters for silicon slabs with refractive index nf = 3.45 of “standard”
thickness d = 0.22 µm on a silica substrate / buffer (ns = 1.45), now with an air cover (nc = 1.0),
at a vacuum wavelength λ = 1.55 µm. These waveguides support fundamental TE and TM
modes with effective indices NTE = 2.8051 and NTM = 1.8748 which are slightly lower than
those in the former symmetric waveguides. This leads to higher critical angles θs,TE = 31.1◦ and
θs,TM = 50.7◦ for radiative losses in the substrate. Losses due to radiation into the air cover are
suppressed for incidence at angles above θc,TE = 20.9◦ and θc,TM = 32.2◦, respectively. Further,
a critical angle θTM,TE = 41.9◦ limits the range where an incoming TE polarized wave can excite
reflected or transmitted TM waves. Conversely, with effective indices NTE>NTM, there is no such
angle for the conversion from TM to TE: Coupling from an incoming TM mode to reflected or
transmitted TE waves is possible for the entire [0, 90]◦-range of incidence angles.
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The dependence of reflectance and transmittance on the trench width w is key for the design
of the power dividers. Figure 11 shows respective plots for nonsymmetric access waveguides.
Panels (a) and (b) correspond to a trench structure with air gap; for (c) and (d) the trench is
assumed to be filled with the substrate medium. The curves are to be compared to those in Fig. 4
for the symmetric waveguides.

Fig. 11. Oblique incidence of semi-guided waves on trench structures with nonsymmetric
layering, with refractive indices ns : nf : nc = 1.45 : 3.45 : 1.0 and air gap (a, b), and a
filled trench (c, d). Reflectance R and transmittance T versus the trench width w, curves
for TE (a, c) and TM excitation (b, d), at angles θ = 45◦ (continuous) and θ = 55◦ (dashed,
dash-dotted).

We start with the results for TE excitation of air trenches in panel Fig. 11(a). When compared
to the symmetric case, the larger refractive index contrast nf : nc across the trench sidewalls
causes a more rapid decay of the field in the gap, and correspondingly a steeper slope of the
reflectance and transmittance curves. Lossless TE-power-dividers with the full 0-to-1-range of
reflectance are still feasible, in principle. However, this requires the realization of narrower gaps
with prospectively stricter tolerances. According to panel (c), these constraints relax for trenches
filled with a higher index medium. In that case, the construction of single splitters and combined
devices for TE operation should be possible just as for the symmetric waveguides.

Things change for excitation by TM modes, as seen in Fig. 11(b, d). The change in the curves’
slope for air-filled trenches is less pronounced than for TE polarization. One observes a noticeable
polarization conversion, with levels of TM-to-TE power transfer of about 8% (air gap) and 10%
(filled trenches), mainly to the reflected TE mode. Radiative losses are still suppressed, in the
sense that the reflectances and transmittances for the fundamental guided TE- and TM-modes
add up to unity. If TM-only operation is required, however, with RTM + TTM<1 these trenches
can no longer be regarded as lossless devices. Trenches of large width still work as mirrors that
reflect the full input power; these are not polarization maintaining mirrors that convert about
8% / 10% of the TM input to TE. Hence it depends on the particular application, whether the
trenches in nonsymmetric slabs can be serviceable.

We conclude that, in general, the oxide cover is beneficial for the beam splitter design. Where
perhaps some of the concepts for other devices might also be adaptable to an oxide cover, or a
cover layer could be required for some composite circuit for entirely different reasons.
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A.1 Slanted trench sidewalls

Even for the symmetric setting with oxide cover, fabrication processes could result in trenches
with slanted sidewalls, i.e. could break the overall symmetry. Qualitatively, we expect two
different effects. On the one hand, for given gap width, trench flanks at oblique angles would
result in a modified “tunnelling strength” of the field, when compared to the vertical flanks, with
different reflectance. If the sidewall angle would be known for a particular process, this could be
easily incorporated in the simulations (though not with the semi-analytical tools used in this paper,
which rely on a rectangular geometry; numerical simulations could be carried out alternatively, as
in Ref. [22]). The design values for the gap widths could then be corrected accordingly. On the
other hand, the violation of the vertical symmetry could lead to polarization coupling, similar to
the features seen for the nonsymmetric structure in the first part of this section. Further numerical
simulations offer a way to assess the effect, in case that is deemed necessary.
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